
Dawson, A 2016 eofs: A Library for EOF Analysis of Meteorological,
Oceanographic, and Climate Data. Journal of Open Research
Software, 4: e14, DOI: http://dx.doi.org/10.5334/jors.122

Journal of
open research software

SOFTWARE METAPAPER

eofs: A Library for EOF Analysis of Meteorological,
Oceanographic, and Climate Data
Andrew Dawson1

1 Atmospheric, Oceanic & Planetary Physics, Department of Physics, University of Oxford, Oxford, UK
andrew.dawson@physics.ox.ac.uk

The eofs library provides a high-level Python interface for computing empirical orthogonal functions
(EOFs) and related quantities, with a focus on correctness and ease of use. The library is implemented in
a modular hierarchical fashion, allowing computations using plain arrays, or the inclusion of metadata. The
software provides a convenient package for users wanting to perform EOF analysis in Python, and inte-
grates with popular libraries from atmospheric and climate science. The software is available on Github.

Keywords: EOF analysis; Meteorology; Oceanography; Climate; Python

(1) Overview
Introduction
Data sets in meteorology, oceanography, and climate
are typically very large, containing data covering large
spatial areas, observed or modelled over long periods of
time. Studying variability in these data sets can be chal-
lenging, with coherent modes of large-scale spatial and
temporal variability in the atmosphere-ocean system
hidden amongst the noise of smaller scale physical pro-
cesses. An often used technique for examining large-scale
patterns of variability in such data sets is the analysis of
empirical orthogonal functions (EOFs) [1]. Decomposing
a complex data set varying in time and space into a set
of EOFs and associated principal component time series
(PCs) can allow insight into the most dominant modes of
spatial variability, for example El Niño, one of the leading
modes of climate variability, is often characterised by the
first EOF and PC of sea surface temperature in the tropical
Pacific [2].

The EOFs and PCs of a data set describe a new basis,
where instead of a series of spatial observations varying
in time, the data set is represented as a set of fixed spa-
tial patterns or modes, which represent a given amount of
the total variance in the data set, and a set of time series
describing how each pattern changes with time. In typi-
cal applications the first few EOFs account for a large por-
tion of the total variance, allowing the study of one or two
modes to give insight into the variability present in the
data set. The method of analysis is purely mathematical
and does not depend on any physical properties of the
quantity being analysed.

The process of computing and analysing EOFs and
related structures is non-trivial, and highly error prone.
For example, consider the computation of EOFs from

a time-series of sea surface temperature on a latitude-
longitude grid. First one must correctly weight the input
data to account for spatial variability in the size of grid
cells due to convergence of the meridians. The input data
must then be reconfigured into a 2-dimensional form,
and care taken to remove any missing values (e.g., values
of an oceanographic field over land) so that the covari-
ance matrix can be constructed, and the EOFs computed
as the (possibly scaled) eigenvectors of the covariance
matrix. In order to correctly interpret the EOFs it is neces-
sary to undo the data preparation steps listed above: the
eigenvectors must be reformed into 2-dimensional maps,
inserting any missing values back into their correct loca-
tions, and weighting often needs to be removed. Typically
one will not just be interested in the EOFs themselves but
also in other derived quantities such as the PC time series
associated with each EOF, or the projection of other fields
onto the EOFs. Similar data preparation and reconfigura-
tion procedures are required to construct these quantities
and great care must be taken to ensure that the applica-
tion of these procedures is consistent in the computation
of each quantity.

There are existing software packages and libraries for
computing EOFs and related quantities [3,4], but this
type of data analysis is often done in an ad-hoc manner
using un-published code. The publically available tools for
EOF analysis are typically libraries that provide separate
procedures to compute each required output, a design
that cannot automatically ensure the self-consistency of
the analysis outputs. Therefore the user is responsible
for keeping track of the integrity of the analysis. One
of the major motivations behind the development of
eofs was to resolve this problem by taking advantage of
object-oriented design. Using an object to encapsulate

http://dx.doi.org/10.5334/jors.122
mailto:andrew.dawson@physics.ox.ac.uk

Dawson: eofsArt. e14, pp.  2 of 4

the core information about how the input data set was
transformed in order to do the EOF computation allows
the construction of method calls to compute any required
related quantity in a manner consistent with the original
decomposition. This is not only convenient for the pro-
grammer as it removes a lot of tedious overheads, but also
ensures correctness of the resulting quantities. The eofs
library has been used to analyse data in a number of sci-
entific studies [5,6].

Implementation and architecture
The eofs library is implemented in a hierarchical structure.
The core of the library is an EOF solver object. The solver
object is a numerical solver constructed by passing a data
set to analyse in the form of a NumPy array [7], and option-
ally an array of weights that apply to that data. Method
calls are then used to generate the required outputs, in
the form of NumPy arrays (see Table 1). This design allows
all methods of the solver object to know exactly what
weighting, reconfiguration and scaling has taken place to
produce the EOFs, and hence allows derived quantities to
be computed in an internally consistent manner. This core
solver object does not know (or care) about the meaning
or structure of the input data set, and is thus generic.

On top of the core component there are interfaces that
can apply the analysis to data structures that contain
structured metadata as well as data values, specifically
designed for meteorological and oceanographic data sets.
These metadata-aware solvers are motivated the desire to
improve data provenance and ensure the correctness of
scientific results. These issues affect all scientific research,
but have been strongly highlighted in the climate sci-
ence community in recent years [8]. The metadata-aware
interfaces provide a layer on top of the core solver that
interprets metadata from the input and uses it to deter-
mine how the data set is structured. The metadata-aware
solvers are able to automatically reconfigure input data
sets and generate appropriate weights for them according
to pre-defined weighting schemes, and crucially they are

able to return objects with correct metadata that can be
used to identify the returned field outside the context of
the analysis program.

The metadata-aware solvers are implemented as wrap-
per classes around the core solver object. This allows
them to interpret the metadata of their input, and recon-
figure the data set and any weights appropriately ready
to be passed to the core solver. The core solver is used to
perform all computations, and the wrapper class applies
appropriate metadata to the computed quantities before
returning them to the user. This prevents users having to
manually throw away metadata to apply a computation,
then having to reconstruct the metadata for the output, a
process which is time consuming and open to errors. The
eofs library currently provides metadata-aware solvers that
understand data structures from iris [9], xarray [10] and
cdms2 (part of UV-CDAT) [11]. The design of metadata-
aware interfaces as wrapper classes around a numerical
core makes extending the library to accommodate other
data structures relatively straightforward.

The hierarchical design concept is also extended to
variations on the EOF computation methodology. The eofs
library provides extra interfaces for computing multivari-
ate EOFs. These are similar to normal EOFs but they are
computed from a covariance matrix formed from observa-
tions of different variables. A pertinent example of the use
of this type of analysis is the computation of the real-time
multivariate Madden-Julian Oscillation index [12]. The
implementation of multivariate EOFs in eofs consists of a
multivariate solver, which is wrapper class around the core
solver, and whose job is to combine separate input data
sets with their own weights into a single array with a single
set of weights ready for input into the core solver, and to
reverse this process for output quantities where necessary.
There are metadata-aware interfaces layered on top of the
multivariate solver that do the translation between meta-
data-carrying data structures and plain NumPy arrays. This
design pattern could be followed in order to implement
some of the numerous variations on EOF analysis [13].

Method name Description

pcs The (optionally scaled) principal component time series (PCs).

eofs The (optionally scaled) empirical orthogonal functions (EOFs).

eofsAsCorrelation The EOFs expressed as the correlation between each PC and the input data set at each grid point.

eofsAsCovariance The EOFs expressed as the covariance between each PC and the input data set at each grid point.

eigenvalues The eigenvalues (decreasing variances) associated with each EOF mode.

varianceFraction The fraction of the total variance explained by each EOF mode.

totalAnomalyVariance The total variance (sum of the eigenvalues).

northTest The typical error associated with each eigenvalue using North’s rule of thumb [16].

reconstructedField Reconstructs the input data set using a specified number of EOFs.

projectField Projects an arbitrary field onto the EOFs to produce a set of pseudo-PCs.

getWeights The array of weights used for the analysis.

Table 1: The method calls available to all solver objects.

Dawson: eofs Art. e14, pp.  3 of 4

Quality control
The eofs library is provided with a suite of unit and integra-
tion tests to test the core functionality and correctness of
the library. The end user can easily run these tests against
the version of the library they have installed to verify it is
working correctly before use.

The test suite is intrinsically part of the development
process, and is expanded as the software is developed and
new features are added. The tests are automatically run
on the Travis CI continuous integration and delivery ser-
vice [14] every time a pull request to the eofs repository is
made, which helps prevent breakage of existing code and
functionality by new contributions.

The eofs library also comes with some example code and
data, which allow the end user to verify that the output of
the library is as expected, as well as see an example of how
the library can be used.

(2) Availability
Operating system
Linux, OSX, Windows.

Programming language
Python 2.7 or Python > = 3.3

Dependencies
setuptools > = 0.7.2

NumPy > = 1.6
iris > = 1.2 (optional; needed for iris metadata-aware

solver)
cdms2 (optional; needed for cdms2 metadata-aware

solver)
xarray (optional; needed for the xarray metadata-aware

solver)
nose (optional; only needed for running the test suite)
pep8 (optional; only needed for running the test suite)
Some of the provided examples in the documentation

require extra dependencies to run, which are not required
for normal use of the software: netCDF4, matplotlib,
cartopy

Software location
Archive (e.g. institutional repository, general reposi-
tory) (required – please see instructions on journal web-
site for depositing archive copy of software in a suitable
repository)

Name: Zenodo
Persistent identifier: http://dx.doi.org/10.5281/

zenodo.46871
Licence: GNU General Public License Version 3
Publisher: Andrew Dawson
Version published: 1.1.0
Date published: 03/03/2016

Code repository (e.g. SourceForge, GitHub etc.) (required)
Name: Github
Identifier: https://github.com/ajdawson/eofs
Licence: GNU General Public License Version 3
Date published: 03/03/2016

Language
English.

(3) Reuse potential
eofs is already used frequently by weather and climate
researchers at institutions across the world. The library is
distributed as part of the Ultrascale Visualization Climate
Data Analysis Tools (UV-CDAT) project [11], and has been
used in a number of publications that the author is aware
of [e.g., 5, 6]. The potential for reuse is huge since eofs
allows a complex and custom EOF analysis methodology
to be implemented quickly and correctly in just a few
object-oriented method calls. The library is flexible and
well documented making it suitable for use in applica-
tions ranging from an interactive data exploration to inte-
gration within a complex data processing pipeline.

There is also much potential for reuse of eofs outside of
the originally intended audience of meteorology, ocean-
ography, and climate research. The term EOF analysis is
used predominantly in the geophysical sciences, with
the terms principal component analysis (PCA) and factor
analysis commonly used to refer to the same procedure
in other fields. The core library components implement
this standard mathematical technique in a way that does
not make assumptions about the form or meaning of the
input data. Therefore eofs can be applied to any data set
that it is believed can be understood in terms of an EOF
decomposition, with the caveat that some of the termi-
nology used in eofs originated in meteorology and may
require some mental translation to transfer to other fields.

The software is documented on-line at http://ajdaw-
son.github.io/eofs. The software is supported on a vol-
untary basis through the code repository’s issue tracker.
Contributions to the project are welcomed, and can be
submitted by making a pull request to the eofs Github
repository.

Competing Interests
The author declares that they have no competing interests.

Acknowledgements
A very early ancestor of eofs was the EOF solver from
PyClimate [15], which provided a basis for the numerical
solution of the EOF problem, although almost none of
this code remains in eofs.

References
1. Wilks, D S 2006 Statistical Analysis in the Atmospher-

ic Sciences. 2nd ed. London: Academic Press.
2. Deser, C and Blackmon, M L 1995 On the Relation-

ship Between Tropical and North Pacific Sea Surface
Temperature Variations. Journal of Climate, 8(6):
1677–2680. DOI: http://dx.doi.org/10.1175/1520-
0442(1995)008<1677:OTRBTA>2.0.CO;2

3. UCAR/NCAR/CISL/TDD, 2016 The NCAR Com-
mand Language (Version 6.3.0). DOI: http://dx.doi.
org/10.5065/D6WD3XH5

4. Pedregosa, F, Varoquaux, G, Gramfort, A, Michel, V,
Thirion, B, Grisel, O, Blondel, M, Prettenhofer, P,

http://dx.doi.org/10.5281/zenodo.46871
http://dx.doi.org/10.5281/zenodo.46871
http://ajdawson.github.io/eofs
http://ajdawson.github.io/eofs
http://dx.doi.org/10.1175/1520-0442(1995)008%3c1677:OTRBTA%3e2.0.CO;2
http://dx.doi.org/10.1175/1520-0442(1995)008%3c1677:OTRBTA%3e2.0.CO;2
http://dx.doi.org/10.5065/D6WD3XH5
http://dx.doi.org/10.5065/D6WD3XH5

Dawson: eofsArt. e14, pp.  4 of 4

How to cite this article: Dawson, A 2016 eofs: A Library for EOF Analysis of Meteorological, Oceanographic, and Climate Data.
Journal of Open Research Software, 4: e14, DOI: http://dx.doi.org/10.5334/jors.122

Submitted: 07 March 2016 Aceepted: 18 April 2016 Published: 26 April 2016

Copyright: © 2016 The Author(s). This is an open-access article distributed under the terms of the Creative Commons
Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

Journal of Open Research Software is a peer-reviewed open access journal published by
Ubiquity Press OPEN ACCESS

Weiss, R, Dubourg, V, Vanderplas, J, Passos, A,
Cournapeau, D, Brucher, M, Perrot, M and
 Duchesnay, E 2011 Scikit-learn: Machine Learning
in Python. Journal of Machine Learning Research, 12:
2825–2830.

5. Dawson, A and Palmer, T N 2015 Simulating Weather
Regimes: Impact of Model Resolution and Stochastic
Parameterization. Climate Dynamics, 44(7): 2177–
2193. DOI: http://dx.doi.org/10.1007/s00382-014-
2238-x

6. Irving, D and Simmonds, I 2016 A New Method for
Identifying the Pacific-South American Pattern and its
Influence on Regional Climate Variability. Journal of
Climate, submitted.

7. van der Walt, S, Colbert, S C and Varoquaux, G 2011
The NumPy Array: A Structure for Efficient Numerical
Computation. Computing in Science and Engineer-
ing, 13(2): 22–30. DOI: http://dx.doi.org/10.1109/
MCSE.2011.37

8. Maibach, E, Leiserowitz, A, Cobb, S, Shank, M,
Cobb, K M and Gulledge, J 2012 The Legacy of Climat-
egate: Undermining or Revitalizing Climate Science
and Policy? WIREs Climate Change, 3(3): 289–295.
DOI: http://dx.doi.org/10.1002/wcc.168

9. Met Office, 2016 Iris: A Python Library for Meteorol-
ogy and Climatology. Available at http://scitools.org.
uk/iris.

10. Hoyer, S, Kleeman, A and Brevdo, E 2016 Xarray: n-d
Labeled Arrays and Datasets in Python. Available at
http://xarray.pydata.org.

11. Williams, D N, Doutriaux, C, Chaudhary, A, Fries,
S, Lipsa, D, Jhaveri, S, Durack, P J, Painter, J,
 Nadeau, D and Maxwell, T 2016 uvcdat v2.4.0. DOI:
http://dx.doi.org/10.5281/zenodo.45136

12. Wheeler, M C and Hendon, H H 2004 An All- Season
Real-Time Multivariate MJO Index: Development of
an Index for Monitoring and Prediction. Monthly
Weather Review, 132: 1917–1932. DOI: http://dx.doi.
org/10.1175/1520-0493(2004)132<1917:AARMMI>2
.0.CO;2

13. von Storch, H and Zwiers, F W 1999 Statistical
Analysis in Climate Research. Cambirdge: Cambridge
University Press. DOI: http://dx.doi.org/10.1017/
CBO9780511612336

14. Travis CI: https://travis-ci.org.
15. Sáenz, J, Zubillaga, J and Fernández, J 2002 Geo-

physical data analysis using Python. Computers
and Geosciences, 28: 457–465. DOI: http://dx.doi.
org/10.1016/s0098-3004(01)00086-3

16. North, G R, Bell, T L, Cahalan, R F and Moeng, F J
1982 Sampling Errors in the Estimation of Empirical
 Orthogonal Functions. Monthly Weather Review, 110(7):
699–706. DOI: http://dx.doi.org/10.1175/1520-
0493(1982)110<0699:SEITEO>2.0.CO;2

http://dx.doi.org/10.5334/jors.122
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1007/s00382-014-2238-x
http://dx.doi.org/10.1007/s00382-014-2238-x
http://dx.doi.org/10.1109/MCSE.2011.37
http://dx.doi.org/10.1109/MCSE.2011.37
http://dx.doi.org/10.1002/wcc.168
http://scitools.org.uk/iris
http://scitools.org.uk/iris
http://xarray.pydata.org
http://dx.doi.org/10.5281/zenodo.45136
http://dx.doi.org/10.1175/1520-0493(2004)132%3c1917:AARMMI%3e2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(2004)132%3c1917:AARMMI%3e2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(2004)132%3c1917:AARMMI%3e2.0.CO;2
http://dx.doi.org/10.1017/CBO9780511612336
http://dx.doi.org/10.1017/CBO9780511612336
https://travis-ci.org
http://dx.doi.org/10.1016/s0098-3004(01)00086-3
http://dx.doi.org/10.1016/s0098-3004(01)00086-3
http://dx.doi.org/10.1175/1520-0493(1982)110%3c0699:SEITEO%3e2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(1982)110%3c0699:SEITEO%3e2.0.CO;2

	_GoBack

