
Lansley, A et al 2016 Caliko: An Inverse Kinematics Software Library Implementation of
the FABRIK Algorithm. Journal of Open Research Software, 4: e36, DOI: http://dx.doi.
org/10.5334/jors.116

Journal of
open research software

SOFTWARE METAPAPER

Caliko: An Inverse Kinematics Software Library
Implementation of the FABRIK Algorithm
Alastair Lansley, Peter Vamplew, Philip Smith and Cameron Foale
Federation University Australia, AU
Corresponding author: Alastair Lansley
(a.lansley@federation.edu.au)

The Caliko library is an implementation of the FABRIK (Forward And Backward Reaching Inverse Kinemat-
ics) algorithm written in Java. The inverse kinematics (IK) algorithm is implemented in both 2D and 3D,
and incorporates a variety of joint constraints as well as the ability to connect multiple IK chains together
in a hierarchy. The library allows for the simple creation and solving of multiple IK chains as well as visu-
alisation of these solutions. It is licensed under the MIT software license and the source code is freely
available for use and modification at: https://github.com/feduni/caliko

Keywords: Inverse; Kinematics; IK; FABRIK; Software; Library; Robotics; Leap; Java

(1) Overview
Introduction
The Caliko software library is a free open-source software
(FOSS) implementation of the FABRIK inverse kinematics
(IK) algorithm [1]. The library was created to provide IK
solutions for hand and finger location data provided by a
Leap Motion sensor [2].

Although the Leap Motion controller provides IK solu-
tions for finger/hand poses, it does so via the sensor’s pro-
prietary closed-source driver, where there is no knowledge
or discussion of the algorithm(s) used or ability to modify
any IK parameters. The Caliko library can be used with the
Leap Motion controller or indeed any collection of con-
nected point data to perform the same IK solving func-
tions, but in an open/transparent fashion with full access
to the source code and numerous tuneable parameters.

The Caliko library is currently being used to implement
novel HCI input methods, which are yet to be published,
but the library itself is freely available. A demonstration
video that outlines the setup and available functionality
can be seen on YouTube [3].

Implementation and architecture
In order to understand the software structure, it makes
sense to first understand the nature of IK problems – where
an articulated body is modelled using a series of ‘bones’
which have start and end locations in 2D or 3D space.
Multiple bones may be connected together, so that the end
location of one bone is the same as the start location of the
next bone. These connected bones form an IK ‘chain’.

Each bone has a single ‘joint’ which may be considered
to be at the start location of the bone, and joints may

constrain the allowable movement of bones with regard
to the previous bone in the IK chain, or with regard to an
arbitrary direction.

To easily work with multiple IK chains that share the
same target location (and which may or may not be con-
nected to each other), a final holder called a ‘structure’
is provided. All IK chains in a structure can be solved by
simply calling:
structure.solveForTarget(some_target_location);

The goal of solving an IK chain is then one that may be
stated as: given an IK chain (which may or may not have a
‘fixed’ start location), what is the best configuration of the
chain so that its end-effector (i.e. the tip of the final bone)
can reach a given target location, or get as close as possi-
ble if the chain cannot successfully be solved for distance?
Further details on the nature of inverse kinematics along
with a variety of IK techniques and methods can be found
in [5] and [6].

As a basic example, a simple 2D IK chain containing
three bones may be constructed and solved using the
Caliko library as shown in Figure 1 below. Further details
regarding the Caliko classes and their usage can be found
in the user and technical documentation provided in the
doc folder of any release of the Caliko software.

The Caliko library was written over a period of 18
months in the Java programming language and is single
threaded, but the standard Java threading mechanisms
can be used to easily allow each thread to process any
‘owned’ IK chains or structures concurrently. Pre-compiled
releases of the library may be downloaded from its GitHub
source code repository, or the source code itself can be
downloaded and packaged into a release using the Maven

http://dx.doi.org/10.5334/jors.116
http://dx.doi.org/10.5334/jors.116
mailto:a.lansley@federation.edu.au
https://github.com/feduni/caliko

Lansley et al: Caliko Art. e36, p.  2 of 5

build management system [4] by issuing the following
command from the top-level directory of the library:

mvn package

As well as implementing the ‘core’ FABRIK algorithm to
solve IK chains, the Caliko library allows for the accuracy
of solutions to be traded against computational effort via
the following mechanisms:

¯
 Solve distance

¡ The minimum distance between the end-effector
and the target. This can be altered to be within
varying distance thresholds before accepting
the solution. For example, if working in 2D with
screen-space directly mapped to world-space, a
solve distance of less than 0.5 (i.e. half a pixel)
would provide a visually identical solution to
one which was accurate down to 0.001 pixels,
but without the potential need for additional
iterative solve attempts.

¯ Iteration change
¡ The minimum change in solve distance across

consecutive solve attempts. If a chain can-
not be solved and/or progress being made
towards the solution is below a given thresh-
old then Caliko can dynamically abort rather
than expend computational effort on a solu-

tion which is only fractionally better than the
current solve distance, and

¯ Iteration count
¡ The maximum number of solve attempts to

be made. As the FABRIK algorithm iteratively
improves upon solutions, a limit may be
placed upon the maximum number of itera-
tions to attempt before deciding that enough
computational effort has been expended.

The FABRIK algorithm is generally very successful in solving
an IK chain, however there may be times when a chain cannot
be successfully solved for distance due to a variety of factors,
such as that the target might be further away than the length
of the chain, or that the chain may be over-constrained. It is
under these circumstances where little can be done beyond
the current solution that dynamically aborting what is essen-
tially a lost cause helps to minimise unnecessary processing,
and where the current best solution may be accepted.

The software itself is broken up into 3 main packages as
shown in Figure 2 below:

¯ au.edu.federation.caliko
¡ This contains the FabrikBone, FabrikJoint,

FabrikChain and FabrikStructure classes in
both 2D and 3D versions.

(a)

Vec2f RIGHT = new Vec2f(1.0f, 0.0f);
Vec2f targetLocation = new Vec2f(15.0f, 12.0f);
float boneLength = 10.0f;

// Create a chain with three bones
FabrikChain2D chain = new FabrikChain2D();
FabrikBone2D base = new FabrikBone2D(new Vec2f(), RIGHT, boneLength);
chain.addBone(base);
chain.addConsecutiveBone(RIGHT, boneLength);
chain.addConsecutiveBone(RIGHT, boneLength);

// Solve the chain for the given target location
chain.solveForTarget(targetLocation);

(b)

Figure 1: Creating and solving a basic 2D chain. (a) shows the initial configuration of the chain and (b) its solved state.
The yellow square represents the chain’s target location.

Lansley et al: Caliko Art. e36, p. 3 of 5

¯ au.edu.federation.caliko.visualisation
¡ This contains classes which allow for easy visu-

alisation of IK bones, joints, chains and struc-
tures using OpenGL 3.3 and GLSL version 330.

¯ au.edu.federation.utils
¡ This contains custom 3x3 and 4x4 matrix

classes, as well as some vector classes and a
Utils class with a number of helper functions.

The demonstration application that comes with the Caliko
library has an additional au.edu.federation.alansley
package which contains a main function that sets up
the 2D and 3D demonstration examples and creates an
OpenGL window with relevant mouse and keyboard han-
dlers to allow for user input.

Quality control
The software has been functionally tested exten-
sively during creation on both the Windows and Linux
platforms.

FABRIK is a computationally inexpensive IK algorithm
when compared to alternatives such a Cyclic Coordinate
Descent (CCD) or Jacobian methods – and in addition, it
provides natural and continuous solutions to IK problems
which do not exhibit discontinuities [1].

In execution, and due to the nature of the FABRIK algo-
rithm and the user-controllable dynamic-abort settings
implemented in the Caliko library, processor usage is
typically very low. For example using the Oracle HotSpot
JVM (Java Virtual Machine) the Java process may use
around ~1–2% of a single core on an Intel i7 processor

whilst actively solving and displaying multiple IK chains
with approximately a dozen constrained bones in each.
When calculating but not graphically displaying the solu-
tions, processor usage is lower still. A graph of solve time
against number of bones in an IK chain is shown below
in Figure 3. As can be seen, the solve duration exhibits
close to a linear response to the number of bones in the
IK chain which makes it suitable for real-time usage sce-
narios. The source code used to generate these figures
can be found in the perf-test folder of the Caliko GitHub
repository.

The Caliko library is designed to run without visualis-
ing the results of its work, that is, it can simply run the
algorithm and return the updated IK chain configuration
to the user. Visualisation functionality is provided, but is
intended only as a quick and easy method of visualising
and experimenting with IK chains and structures.

When constraining bones in an IK chain, solutions can
exhibit discontinuities when they get stuck against a con-
straint and then ‘pull-through’ from one side to the other.
However, this is not necessarily a problem per se, it’s sim-
ply the result of the new solution improving upon the old
solution (that got stuck against a constraint) by solving
the chain ‘the other way around’.

Local hinges in 3D are currently prone to discontinui-
ties due to the direction of a bone containing insuffi-
cient information to generate a consistently aligned
orthonormal set of axes. To mitigate this problem, the
library must be modified to store and maintain a model
matrix per bone, or (ideally) to store bone directions as
quaternions.

Figure 2: The Caliko library classes and package structure.

Lansley et al: Caliko Art. e36, p.  4 of 5

(2) Availability
Operating system
Cross-platform Windows (Vista and above) and Linux (any
modern distribution). For (optional) visualisation, OpenGL
3.3 with GLSL version 330 is required.

Programming language
Java 1.8

Additional system requirements
Any relatively modern PC can run the Caliko library.

In terms of storage requirements, the library as down-
loaded requires just over 2MB of storage. When built,
which includes packaging the LWJGL3 library into the
demonstration application, this increases to slightly
under 7MB.
The demonstration application typically uses less than
75MB of system memory, and (optionally) uses a standard
mouse and keyboard for input.

Dependencies
[Optional libraries for visualisation] LWJGL3 version:
LWJGL 3.0.0b build 64, and OpenGL 3.3 with GLSL
(OpenGL Shading Language) version 330 shaders.

List of contributors
Nil, other than the listed authors.

Software location
Archive (e.g. institutional repository, general repository)
(required)

Name: Federation University Australia GitHub Account
Persistent identifier: DOI: 10.5281/zenodo.59285
Licence: MIT
Publisher: Alastair Lansley/Federation University
Australia
Date published: 02/08/2016

Language
Git hosting. Maven packaging and built system. Java 1.8
classes. HTML technical documentation and PDF user
documentation. Optional visualisation utilises OpenGL
3.3 and GLSL version 330 shaders.

(3) Reuse potential
Inverse kinematic techniques are typically used in con-
trolling the limbs of robotic arms or skeletal movements.
They are also commonly used in video games and 3D ani-
mation where they can, for example, allow for a charac-
ter to reach for an item at a given location in a realistic
fashion without the character first having to be aligned to
a fixed starting point in relation to that item. Other poten-
tial usage scenarios include animation of multi-limbed
insects or animals (with joint restrictions imposing limits
on bone movement in order to constrain them to realistic

Figure 3: IK Chain solve duration in milliseconds vs. number of bones per chain as executed on an Intel i7-3610QM
CPU. All chains for each sequence used the exact same target locations. As can be seen, constraints do not strongly
affect performance. Chains with 1,000 bones can be solved in approximately 16ms (allowing for 60 updates per
second). All chains were solved with the default acceptable solve distance of 0.1f and using the default of up to 20
iterations of the FABRIK algorithm per solve attempt.

http://dx.doi.org/10.5281/zenodo.59285

Lansley et al: Caliko Art. e36, p. 5 of 5

movement extents), or for animation of any provided
human hand or body data where intermediary joint loca-
tions may be estimated from anatomical models.

As the FABRIK algorithm is typically considerably faster
than other IK algorithms [1], it would be a good fit for IK
in video games where processing occurs in real-time and
therefore processing capacity is in high demand. Further,
as the Caliko library provides a number of configurable
settings for acceptance or resolving of a given chain con-
figuration it may be easily tuned for high performance in
a specific scenario (see the section on Implementation
and Architecture for further details).

The Caliko source code is made freely available under
the MIT license and may be extended upon as desired, or
used as a reference implementation for transition into
other programming languages suitable for inclusion in
game or graphical engines such as Unity or Unreal Engine.
An example of such a transition to another programming
language can be seen in [7], where the 3D implementa-
tion has been translated into JavaScript.

No commercial support is available for the Caliko soft-
ware, but issues may be reported via the standard GitHub
issue tracking mechanism.

Acknowledgements
Many thanks to Andreas Aristidou and Joan Lasenby for
the creation of the FABRIK algorithm, and to my PhD
supervisors Peter Vamplew, Phil Smith and Cameron Foale

for their support and guidance during the creation of the
Caliko library.

Competing Interests
The authors declare that they have no competing interests.

References
1. Aristidou, A and Lasenby, J 2011 FABRIK: a fast, itera-

tive solver for the inverse kinematics problem. Graphi-
cal Models, 73(5), pp. 243–260. DOI: http://dx.doi.
org/10.1016/j.gmod.2011.05.003

2. Leap Motion Sensor Viewed 01 February 2016.
https://www.leapmotion.com/product/desktop.

3. The Caliko Inverse Kinematics Library Viewed 05
February 2016. https://youtube/wEtp4P2ucYk.

4. Apache Maven build management tool Viewed
26 July 2016. https://maven.apache.org/.

5. Buss, S R 2004 Introduction to inverse kinematics
with jacobian transpose, pseudoinverse and damped
least squares methods. IEEE Journal of Robotics and
Automation, 17(1–19), p.16.

6. Aristidou, A and Lasenby, J 2009 Inverse kinemat-
ics: a review of existing techniques and introduction of
a new fast iterative solver. University of Cambridge,
Department of Engineering.

7. FULLIK JavaScript version of the Caliko IK library
Viewed 02 August 2016. https://github.com/lo-th/
fullik.

How to cite this article: Lansley, A, Vamplew, P, Smith, P and Foale, C 2016 Caliko: An Inverse Kinematics Software Library
Implementation of the FABRIK Algorithm. Journal of Open Research Software, 4: e36, DOI: http://dx.doi.org/10.5334/jors.116

Published: 05 February 2016  Accepted: 18 August 2016  Published: 09 September 2016

Copyright: © 2016 The Author(s). This is an open-access article distributed under the terms of the Creative Commons
Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

Journal of Open Research Software is a peer-reviewed open access journal published by
Ubiquity Press OPEN ACCESS

http://dx.doi.org/10.1016/j.gmod.2011.05.003
http://dx.doi.org/10.1016/j.gmod.2011.05.003
https://www.leapmotion.com/product/desktop
https://youtu.be/wEtp4P2ucYk
https://maven.apache.org
https://github.com/lo-th/fullik
https://github.com/lo-th/fullik
http://dx.doi.org/10.5334/jors.116
http://creativecommons.org/licenses/by/4.0

	(1) Overview
	Introduction
	Implementation and architecture
	Quality control

	(2) Availability
	Operating system
	Programming language
	Additional system requirements
	Dependencies
	List of contributors
	Software location
	Language

	(3) Reuse potential
	Acknowledgements
	Competing Interests
	References
	Figure 1
	Figure 2
	Figure 3

