
Fachada, N et al 2016 PerfAndPubTools – Tools for Software Performance
Analysis and Publishing of Results. Journal of Open Research Software, 4:
e18, DOI: http://dx.doi.org/10.5334/jors.115

Journal of
open research software

SOFTWARE METAPAPER

PerfAndPubTools – Tools for Software Performance
Analysis and Publishing of Results
Nuno Fachada1, Vitor V. Lopes2, Rui C. Martins3 and Agostinho C. Rosa1

1 Institute for Systems and Robotics, LARSyS, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
nfachada@laseeb.org

2 Universidad de las Fuerzas Armadas-ESPE, Sangolquí, Ecuador
3 Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, Braga, Portugal
Corresponding author: Nuno Fachada

PerfAndPubTools consists of a set of MATLAB/Octave functions for the post-processing and analysis of
software performance benchmark data and producing associated publication quality materials.

Keywords: Profiling; Benchmarking; Performance analysis; Publishing tools
Funding statement: This work was supported by the Fundação para a Ciência e a Tecnologia (FCT) projects
UID/EEA/50009/2013 and UID/MAT/04561/2013, and partially funded with grant SFRH/BD/48310/2008,
also from FCT. The author Vitor V. Lopes acknowledges the financial support from the Prometeo project
of SENESCYT (Ecuador).

(1) Overview
Introduction
PerfAndPubTools consists of a set of MATLAB [1],
GNU Octave-compatible [2], functions for the post-pro-
cessing and analysis of software performance bench-
mark data and producing associated publication quality
materials. More specif ically, the functions bundled with
PerfAndPubTools allow to:

1. Batch process files containing benchmarking data of
computer programs, one file per run.

2. Determine the mean and standard deviation of
benchmarking experiments with several runs.

3. Organize the benchmark statistics by program imple-
mentation and pro gram setup.

4. Output scalability and speedup data, optionally
 generating associated fig ures.

5. Create publication ready benchmark comparison
tables in LATEX.

These tools were originally developed to assess the per-
formance of serial and parallel implementations of the
PPHPC simulation model [3], as well as for producing
some of the associated publication quality materials.
However, the tools can be used with any computational
benchmark experiment.

Implementation and architecture
Performance analysis in PerfAndPubTools takes place
at two levels: implemen tation and setup. The implementa-
tion level is meant to be associated with specific software

implementations for performing a given task, for exam-
ple a particular sorting algorithm or a simulation model
realized in a certain pro gramming language. Within the
context of each implementation, the software can be
executed under different setups. These can be different
computational sizes (e.g., vector lengths in a sorting algo-
rithm) or distinct execution parame ters (e.g., number of
threads used).
PerfAndPubTools is implemented in a layered

architecture using a procedu ral programming approach,
as shown in Figure 1. From lowest to highest-level of
functionality, the functions represented in this Figure
have the following roles:

Figure 1: PerfAndPubTools architecture. Blocks in
typewriter font represent functions. Dashed blocks
 represent directly replaceable functions.

http://dx.doi.org/10.5334/jors.115
mailto:nfachada@laseeb.org

Fachada et al: PerfAndPubTools – Tools for Software Performance Analysis and Publishing of ResultsArt. e18, p.  2 of 6

get_gtime Given a file containing the default output
of the GNU time [4] com mand, this function extracts the
user, system and elapsed times in seconds, as well as the
percentage of CPU usage.
gather_times Loads execution times from files in a

given folder. This function uses get_gtime by default,
but can be configured to use another function to load
individual benchmark files with a different format.
perfstats Determines mean times and respec-

tive standard deviations of a com putational experiment,
optionally plotting a scalability graph if different setups
correspond to different computational work sizes.
speedup Determines the average, maximum and min-

imum speedups against one or more reference implemen-
tations across a number of setups. Can optionally generate
a bar plot displaying the various speedups.
times_table Returns a matrix with useful contents

for using in tables for publi cation, namely times (in sec-
onds), absolute standard deviations (seconds), relative
standard deviations, and speedups against one or more
reference implementations.
times_table_f Returns a table with performance

analysis results formatted in plain text or in LATEX (the
latter requires the siunitx [5], multirow [6] and
booktabs [7] packages).

Although the perfstats and speedup functions
optionally create plots, these are mainly intended to
provide visual feedback on the performance analysis
being undertaken. Those needing more control over the
final figures can cus tomize the generated plots via the
returned figure handles or create custom plots using the
data provided by perfstats and speedup. Either way,
MATLAB/Octave plots can be used directly in publications,
or converted to LATEX using the excellent matlab2tikz
script [8], as exemplified in the PerfAndPubTools
user manual.

An example: comparing sorting algorithms
Experimental setup: The performance of four sorting
algorithms, imple mented in C [9], is compared using
PerfAndPubTools. The algorithms, Bubble sort,
Selection sort, Merge sort and Quicksort [10], are used to
sort random inte ger vectors of sizes 1 x 105, 2 x 105, 3 x
105 and 4 x 105. For each size, individual algorithms are
executed ten times. Each run is benchmarked with GNU
time, the output of which is redirected to a file with the
following identifiers in its name: algorithm employed, run
number and vector size.

In this context, a sorting algorithm is an implementa-
tion, and each vector size is a setup.

Defining implementation specs: Implementation
specs are the basic ob jects accepted by the perf-
stats, speedup and times_table functions. An
implementation spec defines one or more setups for a
single implementation. A setup is defined by the follow-
ing fields: a) sname, the name of the setup; b) folder,
the folder where to load benchmark files1 from; c) files,
the specific files to load (using wildcards); and, d) csize,
an optional computational size for plotting purposes.
Multiple implementation specs can be defined, allowing

PerfAndPubTools to compare multiple implementa-
tions across different setups.

In the following paragraphs, implementations specs
stipulating all the setups (i.e., vector sizes) for the Bubble
sort, Selection sort, Merge sort and Quicksort algorithms
are represented by the bs, ss, ms and qs variables,
respectively. For example, the Bubble sort implementa-
tion spec, bs, can be specified as follows:

 datadir = ’path/to/files’;

 bs1e5 = struct(’sname’, ’1e5’, ...
 ’folder’, datadir, ...

’files’, ’*_bubble_100000_*.txt’, ...
’csize’ ,1e5);

 bs2e5 = struct(’sname’, ’2e5’, ...
 ’folder’, datadir, ...
 ’files’, ’*_bubble_200000_*.txt’, ...
 ’csize’ ,2e5);
 bs3e5 = struct(’sname’, ’3e5’, ...
 ’folder’, datadir, ...
 ’files’, ’*_bubble_300000_*.txt’, ...
 ’csize’, 3e5);
 bs4e5 = struct(’sname’, ’4e5’, ...
 ’folder’, datadir, ...
 ’files’, ’*_bubble_400000_*.txt’, ...
 ’csize’, 4e5);

 bs = {bs1e5, bs2e5, bs3e5, bs4e5};

Implementation specs for the remaining algorithms are
defined in a similar fashion. Note that all implementa-
tions specs must have the same number of setups, and
corresponding setups should have the same sname.
Additionally, plotting with perfstats requires that the
computational size, csize, is defined and has the same
value for corresponding setups in different implementa-
tions specs.

Algorithm scalability: The perfstats function
determines mean times and standard deviations of indi-
vidual setups for each implementation. If the various
setups correspond to different computational work sizes,
perfstats can option ally plot a scalability graph. The
following instruction performs this task for the experi-
mental setup under discussion:
 [m, s] = perfstats(3, ‘Bubble’, bs, ...

 ‘Selection’, ss, ‘Merge’, ms, ...
 ‘Quick’, qs);

The contents of the returned variables, m and s, are as
follows:
 m=
 36.0040 144.8210 325.1730 577.8600
 9.5270 38.0500 88.5130 153.6560
 0.0200 0.0410 0.0600 0.0850
 0.0100 0.0200 0.0300 0.0510
 s =
 0.8873 2.9223 6.1874 6.3846
 0.0690 0.2829 3.6976 3.0600
 0.0000 0.0032 0.0000 0.0127
 0.0000 0.0000 0.0000 0.0032

The m variable represents mean times (in seconds),
while s holds the re spective standard deviations. Rows
are associated with implementations (i.e., sorting algo-
rithms), while columns represent setups (i.e., vector sizes).
The first parameter of perfstats specifies whether to
generate a scalability plot. More specifically, the value 3
orders the function to generate a semi-logarithmic plot,

Fachada et al: PerfAndPubTools – Tools for Software Performance Analysis and Publishing of Results Art. e18, p.  3 of 6

as show in Figure 2. Negative values indicate that the
figure should also display error bars representing the
standard deviation in the measured computational sizes.
No plot will be generated if zero is passed as the first
argument.

Obtaining the speedup: The speedup function deter-
mines speedups against one or more reference implemen-
tations, across a number of setups. Its usage is similar to
that of perfstats, requiring the identification of the
implementation specs to compare:
 [s_avg, s_max, s_min] = speedup(-2, 1, ...
 ‘Bubble’, bs, ‘Selection’, ss, ...

‘Merge’, ms, ‘Quick’, qs);

The first parameter concerns the optional bar plot the
function is able to generate. An absolute value of 2 states
that a bar plot with a logarithmic scale should be generated,
as shown in Figure 3. Since this value is negative, error
bars representing the maximum and minimum speedups
are drawn on top of the average speedup bars. The second
parameter defines the reference implementation(s) to
which the speedups are to be determined against. Passing
1 identifies the first implementation, Bubble sort, as the
reference. The speedup function returns cell arrays con-
taining the average, maximum and minimum speedup
matrices for each reference implementation. In this case,

one reference was defined, and thus only the first item in
the returned cells is available:
 s_avg{1} =
 1.0e+04 *
 0.0001 0.0001 0.0001 0.0001
 0.0004 0.0004 0.0004 0.0004
 0.1800 0.3532 0.5420 0.6798
 0.3600 0.7241 1.0839 1.1331

In a similar fashion to the mean and standard devia-
tion matrices returned by perfstats, rows of speedup
matrices are associated with implementations (i.e., sorting
algorithms), while columns represent setups (i.e., vector
sizes). Note that, in this case, the first row represents the
average speedup of Bubble sort against itself, and, as such,
the values are all ones.

Generating tables: PerfAndPubTools can gener-
ate plain text or publication quality tables summarizing
the performed computational benchmarks. The pro cess
is divided in two steps using the times_table and
times_table_f func tions, respectively. The former
determines and returns a matrix containing partial or
complete information to generate a table, while the latter
effectively generates tables. This division is useful because
times_table_f can accept more than one matrix
returned by times_table, allowing the generation of
more complex tables.

Figure 2: Scalability plot generated by the perfstats function.

Fachada et al: PerfAndPubTools – Tools for Software Performance Analysis and Publishing of ResultsArt. e18, p.  4 of 6

The times_table function, like perfstats and
speedup, requires the iden tification of the imple-
mentation specs to compare, as shown in the following
command:
 tdata = times_table(1, ...
 ‘Bubble’, bs,‘Selection’, ss, ...
 ‘Merge’, ms, ‘Quick’, qs);

The first argument designates the references imple-
mentation or implemen tations, in a similar fashion to the
second parameter of speedup. The return value, tdata,
can be passed to times_table_f in order to generate
a table:
 times_table_f(0, ‘vs Bubble’, tdata)

The first argument, 0, instructs the function to generate
a plain text table, as shown in Figure 4. Setting this value
to 1 would generate a LATEX table, as shown in Figure 5.
Note that LATEX tables require the siunitx, multi-
row and booktabs packages.

Complete example: The complete example is available
in the user manual bundled with the software. It contains
the necessary steps required to reproduce these results,
also showing how the return values of perfstats
and speedup can be used to generate custom publica-
tion quality plots. The user manual also details an addi-
tional example concerning the performance of serial and

parallel implementations of the PPHPC simulation model
[3], namely different ways of contextualizing the concept
of computational size, and the generation of more com-
plex tables.

Quality control
The available functions are covered by unit tests in order
to ensure their correct behavior. The MOxUnit framework
[11] is required for running the unit tests. Additionally,
all the examples available in the user manual (bundled
with the software) have been tested in both MATLAB and
Octave.

(2) Availability
Operating system
Any system capable of running MATLAB R2013a or GNU
Octave 3.8.1, or higher.

Programming language
MATLAB R2013a or GNU Octave 3.8.1, or higher.

Dependencies
There are no additional dependencies for the package
tools. However, unit tests depend on the MOxUnit unit
test framework for MATLAB and GNU Octave.

Figure 3: Speedup plot generated by the speedup function.

Fachada et al: PerfAndPubTools – Tools for Software Performance Analysis and Publishing of Results Art. e18, p.  5 of 6

List of contributors
The software was created by Nuno Fachada.

Software location
Archive

Name: PerfAndPubTools
Persistent identifier: https://zenodo.org/

record/50190
Licence: MIT License

Publisher: Zenodo
Date published: 21/04/2016

Code repository
Name: PerfAndPubTools
Identifier: https://github.com/fakenmc/

perfandpubtools
Licence: MIT License
Date published: 21/04/2016

Language
English.

(3) Reuse potential
These utilities can be used for analyzing any
 computational experiment. As described in
‘Implementation and architecture’, other benchmark
data formats can be specified by implementing a cus-
tom function to replace get_gtime and setting its
handle in the gather_times function. Results from
perfstats and speedup functions can be used
to generate other types of figures. The same is true
for times_table, the results of which can be inte-
grated in table layouts other than the one provided by
times_table_f.

Competing Interests
The authors declare that they have no competing interests.

Acknowledgements
This software is enhanced by the matlab2tikz script
and by the siunitx, multirow and booktabs LATEX
packages.

Figure 5: LATEX table generated by times_table_f.

Figure 4: Plain text table generated by times_table_f.

https://zenodo.org/record/50190
https://zenodo.org/record/50190
https://github.com/fakenmc/perfandpubtools
https://github.com/fakenmc/perfandpubtools

Fachada et al: PerfAndPubTools – Tools for Software Performance Analysis and Publishing of ResultsArt. e18, p.  6 of 6

Note
 1 e.g., files containing the output of GNU time.

References
1. The MathWorks 2013 Inc. Natick, Massachusetts,

USA MATLAB and Statistics Toolbox Release 2013a.
2. Eaton, J W, Bateman, D, Hauberg, S and Wehbring, R

2015 GNU Octave version 4.0.0 manual: a high-level
interactive language for numerical computations, Cre-
ateSpace Independent Publishing Platform, fourth edi-
tion, (March).

3. Fachada, N, Lopes, V V, Martins, R C and Rosa, A C
2016 Parallelization strategies for spatial agent-based
models. Interna tional Journal of Parallel Programming,
(January) pp. 1–33.

4. Keppel, D, MacKenzie, D, Juul, A H and Pinard, F
1990 GNU time, available: https://www.gnu.
org/software/time/.

5. Wright, J 2016 siunitx: A comprehensive (SI) units
package, (January) available: https://www.ctan.
org/pkg/siunitx.

6. van Oostrum, P, Bache, Ø and Leichter, J 2010 The
multi- row, bigstrut and bigdelim packages, (February)
available: https://www.ctan.org/pkg/mul-
tirow.

7. Fear, S 2005 Publication quality tables in LATEX,
(April) available: https://www.ctan.org/pkg/
booktabs.

8. Schlomer, N 2008 matlab2tikz, available: http://
www.mathworks.com/matlabcentral/
fileexchange/22022-matlab2tikz-mat-
lab2tikz.

9. Fachada, N 2016 Self-contained ANSI C program for
benchmarking sort ing algorithms, available: htt-
ps://github.com/fakenmc/sorttest_c.

10. Sedgewick, R 1997 Algorithms in C, Parts 1–4:
Fundamen tals, Data Structures, Sorting, Searching,
Addison Wesley, (September).

11. Oosterhof, N N 2015 MOxUnit – An xUnit frame-
work for Matlab and GNU Octave, available: http://
www.mathworks.com/matlabcentral/
fileexchange/54417-moxunit.

How to cite this article: Fachada, N, Lopes, V V, Martins, R C and Rosa, A C 2016 PerfAndPubTools – Tools for Software
Performance Analysis and Publishing of Results. Journal of Open Research Software, 4: e18, DOI: http://dx.doi.org/10.5334/
jors.115

Submitted: 26 January 2016 Accepted: 26 April 2016 Published: 12 May 2016

Copyright: © 2016 The Author(s). This is an open-access article distributed under the terms of the Creative Commons
Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

Journal of Open Research Software is a peer-reviewed open access journal published by
Ubiquity Press OPEN ACCESS

https://www.gnu.org/software/time/
https://www.gnu.org/software/time/
https://www.ctan.org/pkg/siunitx
https://www.ctan.org/pkg/siunitx
https://www.ctan.org/pkg/multirow
https://www.ctan.org/pkg/multirow
https://www.ctan.org/pkg/booktabs
https://www.ctan.org/pkg/booktabs
http://www.mathworks.com/matlabcentral/fileexchange/22022-matlab2tikz-matlab2tikz
http://www.mathworks.com/matlabcentral/fileexchange/22022-matlab2tikz-matlab2tikz
http://www.mathworks.com/matlabcentral/fileexchange/22022-matlab2tikz-matlab2tikz
http://www.mathworks.com/matlabcentral/fileexchange/22022-matlab2tikz-matlab2tikz
https://github.com/fakenmc/sorttest_c
https://github.com/fakenmc/sorttest_c
http://www.mathworks.com/matlabcentral/fileexchange/54417-moxunit
http://www.mathworks.com/matlabcentral/fileexchange/54417-moxunit
http://www.mathworks.com/matlabcentral/fileexchange/54417-moxunit
http://dx.doi.org/10.5334/jors.115
http://dx.doi.org/10.5334/jors.115
http://creativecommons.org/licenses/by/4.0/

